
Midterm Practice Problems
These problems will help you study for the midterm. You should not expect the exam to be exactly like

this.

1. Arrays, Pointers, and Strings
1.1: What are *p, *t, j, and k after this code is run?

int j, k;

int *p = &j;

int *t;

*p = 200;

k = *p + 500;

t = &k;

*p = *t;

k = 10;

Hint: You may find it easiest to write out a memory diagram for questions like this. Always think

through the code carefully and you should have a precise understanding of what happens if a *

or & are used.

CS 2113 Software Engineering - Fall 2018 Syllabus

1.2: What will this program print?

char alphabet[9] = "abcdefgh";

char *str = alphabet;

str[0] = 'P';

str[5] = 'Q';

str += 2;

*str = 'R';

str[3] = 'S';

printf("alph: %s\n", alphabet);

printf("str : %s\n", str);

Hint: Remember that a pointer does not make a copy of whatever it points to!

1.3: What entries in the days array does this fill in and to what values?

int days[365];

int *dayptr = days;

*dayptr = 76;

dayptr++;

*dayptr = 79;

dayptr[10] = 80;

Hint: We saw pointer arithmetic in Module C-1, but you may be confused about what is

happening to a pointer’s address when you see a line like dayptr++ . We would expect this to

increase the address of dayptr by one, but in reality that would be problematic since each

integer in the array consumes several bytes (typically 4), so adding 1 to the address would make it

point to the middle of the integer. Therefore, the C compiler automatically translates dayptr++

into an instruction that increases the address by 4, not 1. Similarly, the line dayptr = dayptr +

10 would actually increase the address stored in dayptr by 40 . Thus any math operations
performed on a pointer are automatically scaled by the size of the pointer’s data type (in this
case int).

1.4: Write a program that uses a dynamically sized 2D array. The first row should hold the number 1,

the second should hold two integers each set to 2, and so on:

1

22

333

4444

....

nnnnnn

Your array should only use the precise amount of space needed to store the n rows of integers. After

you have allocated space and filled in all entries in the 2D array you should print it out in the format

above.

Write your code in this Repl.it editor. Adjusting n should result in a different sized output.

Hint: Remember, a dynamic array must be allocated from the heap, and in this case we need a

different amount of space for each row (1 integer for the first row, 2 integers for the second, etc).

Your overall array should be represented by a int** variable, and you will need to allocate

space for the first dimension of the array (the rows), and then have a for loop to allocate space for

the columns in each row.

Tim Wood
https://repl.it/@twood02/c-review-2dn-solved

2. Memory
2.1: Fill in a memory diagram for when the following code is run until it reaches the HERE comment.

Assume that both an int and an int* consume 4 bytes and that malloc() allocates memory in

consecutive chunks out of the heap.

void firstFunc() {

 int x = 20;

 int b = 30;

 int *p = malloc(sizeof(int) * 2);

 p[0] = 5;

 p[1] = 6;

}

void secondFunc() {

 int *c;

 c = (int*) malloc(sizeof(int));

 int *d;

 d = (int*) malloc(sizeof(int));

 *c = 45;

 free(d);

 thirdFunc();

 free(c);

}

void thirdFunc() {

 int e = 50;

 int *q;

 q = (int*) malloc(sizeof(int));

 e = 55;

 *q = 100;

 /**** HERE ****/

 free(q);

 return;

}

void fourthFunc() {

 int z = 23;

 int p = 45;

}

int main() {

 int x = 10;

 int *y = &x;

 firstFunc();

 secondFunc();

 fourthFunc();

 return 0;

}

2.2: How much memory does the following code reserve, and how many 4-byte ints could it store?

How could you change the code to always create exactly enough space for 20 integers, even if you

weren’t sure if the code would be run on a 16, 32, or 64bit platform?

int* intlist = (int*) malloc(10);

You don’t need to memorize the size of every data type, but you should understand why some are

larger than others.

2.3: Consider the code in this Repl.it editor:

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 int** a;

 a = malloc(10*sizeof(int*));

 for(int j=0; j < 10; j++) {

 a[j] = malloc(sizeof(int)*5);

 for(int k=0; k < 5; k++) {

 a[j][k] = j * k;

 printf("a[%d][%d] = %d\n", j, k, a[j][k]);

 }

 }

 free(a);

 return 0;

}

Exactly how much memory does this program allocate on the heap? Does the program correctly free

all of the memory it allocates?

Always look for a free that matches every malloc

2.4 The size of a char is 1 byte. Use a Repl.it editor to find out the size of a char* . Why are they

different?

You don’t need to memorize the size of every data type, but you should understand why some are

larger than others.

3. Data Structures
3.1: Consider the code below from this Repl.it editor.

#include <stdio.h>

#include <stdlib.h>

struct car {

 char* make;

 char* model;

 int year;

};

struct house {

 char* street;

 int number;

 int sqft;

};

struct person {

 struct car *cars;

 int numCars;

 struct house house;

 char* name;

};

void printCar(struct car* car) {

 printf("Car: %s %s from %d\n", car->make, car->model, car->year);

}

void printHouse(struct house* house) {

 printf("House: %d %s with %d square feet\n", house->number, house->street, ho

}

void printPerson(struct person* person) {

 // print all cars and house info

}

int main(void) {

 struct person me;

 // fill in data structure

 printPerson(&me);

 return 0;

}

Tim Wood
https://repl.it/@twood02/c-review-structs-solved

