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Java 4: Class Organization, Abstraction

Use IntelliJ to “Check out from Version Control” this 
git repo: https://github.com/cs2113f18/template-j-4

Click Yes/Next until the project opens
Open code for drawing.MyDrawing

Run and edit the code 
Play.

https://github.com/cs2113f18/template-j-4


This Time...
• Project 1: how was it?

• More OOP Concepts
• Abstract Classes
• Polymorphism
• Introspection
• Interfaces

• Also
• Project 2
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So Long CodeAnywhere…
• Sadness? Tears? of joy?
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IntelliJ IDEA
• Integrated Development Environment (IDE)

• Will make some parts of your life easier
• Can be a bit overwhelming

• Allows us to build more interesting programs
• Can create windows, play sounds, send data over network...

• Teaches you about a more realistic development 
environment
• Your future job may use something different, but the principles 

will be the same
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Java Quiz*!
• Put code in the animals package!
• Store two types of pets---cats and dogs

• When you create a pet, constructor takes a name
• All pets have a printName() function that prints the name
• All pets have a makeNoise() function

• Cats say "meow" and dogs say "woof"

• Your main method should:
• Create two dogs named Fido and Spot
• Create three cats named Fluffy, Mowzer, and Pig
• Use ONE ArrayList to store all 5 pets
• Print the names of all pets
• Call the makeNoise function on all the pets
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* This is not actually a quiz



Files and Collections
• Let’s:

• Read all lines in a file
• Add each line to an Array List
• Print out a random entry from the array list

• Modify files.RandReader.java
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Hierarchies and 
Abstraction



Use the benefits of OOP
• Use a super class to store common 

functionality

• Why?
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Use the benefits of OOP
• Use a super class to store common 

functionality

• Why?
• Code reuse - no copy/paste

• What if you need to add an "age" field to all pets?

• Polymorphism - treat similar objects the same way
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 ArrayList<Pet> list = new ArrayList<Pet>(); 
 list.add(new Cat("Fluffy", 9)); 
 list.add(new Dog("Fido")); 

 for(Pet s: list) { 
   s.makeNoise(); 
 }



Abstraction
• Sometimes it doesn't make sense to implement 

the functions in a class
• Would we ever want to instantiate a Pet object?

• What would go in Shape's functions?
• Abstract classes define the structure of a class, 

but not its actual implementation
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Abstract Classes
• Mark class and methods with abstract keyword

• No function body for abstract methods
• Class can still have some real data and methods

• Child classes must implement all abstract 
methods

• You can never instantiate an abstract class
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public abstract class Shape {
public abstract void drawOutline();
public abstract void drawFilled();

}

public class Triangle extends Shape {
public void drawOutline() { ... }  
public void drawFilled() { ... } 

}



Drawing Shapes
• Look at the shapes package

• What is the class hierarchy?

• Create an ArrayList and put a Circle, Rectangle, 
and Square into it

• Draw the filled version of each shape to the 
screen with a for loop
• Get each shape out of the list and then call its drawFilled()

• Add some more shapes to create a beautiful work 
of art

!12



Class Hierarchies
• Look at the "dumbshapes" package

• Why is this dumb?
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Polymorphism
• Why does this work?

• but not this?
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ArrayList<Shape> list = new ArrayList<Shape>();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Rectangle(10, 5, 3, 6, Color.RED));
list.get(0).drawFilled();

ArrayList list = new ArrayList();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Dog("Fido"));
list.get(0).drawFilled();



Java is "strongly typed"
• The JVM knows the type (class) of each object
• It enforces rules based on those types

• At compile time it will decide if your code calls 
functions that a type does not support

• The array holds items of type Object 
• That class doesn't have a drawFilled function!
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ArrayList list = new ArrayList();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Dog("Fido"));
list.get(0).drawFilled();

??????



Casting
• Casting objects does let us get around type rules:

• What happens if we cast to the wrong type?
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// In package dumbshapes
ArrayList list = new ArrayList();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Rectangle(10, 5, 3, 6, Color.RED));
list.add(new Square(4, 6, 5, Color.GREEN));

((Circle) list.get(0)).drawFilled();
((Rectangle) list.get(1)).drawFilled();
((Square) list.get(2)).drawFilled();

((Circle) list.get(2)).drawFilled();



But Remember:
• An object can do everything that its parent can do!

• What about the opposite?
• Is a Shape a Circle?
• Is a Square a Rectangle?
• Is a Rectangle a Square?

!17

ArrayList<Shape> list = new ArrayList<Shape>();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Rectangle(10, 5, 3, 6, Color.RED));
list.get(0).drawFilled(); // OK since Circle's are Shapes

ArrayList<Shape> list = new ArrayList<Shape>();
list.add(new Circle(10, 10, 5, Color.blue));
int r = list.get(0).radius; // Is this OK?
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Introspection
• Polymorphism must know class of each object
• Introspection allows you to ask questions about 

an object or class
• instanceof operator asks if an object is part of 

a particular class

!18

for(Shape s: shapes) {
if(s instanceof Rectangle){

    s.drawOutline();
}
else {
s.drawFilled();
if(s instanceof Circle) {
   r = ((Circle)s).radius;

}
}

What happens if I 
have a Circle, 

Rectangle, and 
Square?



Organizing a zoo
• Suppose we have a program about animals...

• Cats, dogs, wolves, bears, lions, unicorns, etc

• They do things:
• eat
• roam
• make noise

• What classes and functions do we need?
• How would you organize them?  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Consider these animals...

• How would they fit into a class tree?
• Pandas and Puppies are both cute… :(
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GrizzlyBear PandaBear CutePuppy



Multiple Inheritance
• What if it makes sense for a class to inherit from 

two parent classes?
• Java does not allow you to extend multiple classes

• Use an Interface
• Looks like an abstract class
• List of functions that must 

be implemented
• Cannot include data!
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public interface Cuddly {
public void snuggle();

}

public class PandaBear extends Bear implements Cuddly {
public void snuggle() { ... }  
// ...

}



Why use an interface?
• You can only have one parent

• But you can implement many interfaces
• Useful when:

• Some subclasses do not implement a function
• Objects from several classes do implement a function

• Vegetarian interface implemented by:
• Brontosaurus (child of Dinosaur)
• Koala (child of Marsupial, also implements Cuddly)
• Hindu (child of Human)
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Animals and pets
• Support as many of these animals as possible:

• Add code to the animals package
• Make them do interesting things

• Pets have names
• Cuddly animals snuggle
• Felines all roar
• What else?

• Abstract classes?      Interfaces?
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Cats, dogs, wolves, bears, lions, 
unicorns, parrots, grizzly bears, 
panda bears, pigeons, cuddly puppies, 
panthers, horses, talking bears.

In groups of at 
least 2!



Some animals
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An Interface is a Contract
• If you implement an interface, you promise to 

support all of the methods defined by the interface

• Why is this useful???
• It means the compiler can treat all objects of an interface in 

the same way---they MUST implement its functions
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Interfaces & Polymorphism
• Polymorphism lets us treat all classes that:

• Implement the same interface
• Are children of the same parent

• As if they are that parent or interface

•
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public void  main()
{
ArrayList<Printable> printme = new ArrayList<Printable>();
printme.add( new Triangle() );
printme.add( new Square() );
printme.add( new PdfDocument() );
printme.add( new TextDocument() );
for (Printable p : printme) { p.print(); }

}



Abstract and Interface
• Question 1:

• Can an abstract class have data members? Can an interface?
• Question 2:

• Can you include the body of a function in an abstract class? In 
an interface?

• Question 3:
• What happens if a subclass does not implement one of the 

methods in an abstract parent or an interface?
• Question 4:

• Can you instantiate an object of an abstract type? an 
interface?
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Interfaces for Sorting
• Sorting is a very common requirement
• How do you sort:

• Numbers
• Letters
• Names
• Animals
• Customers

• Basic operation in any sorting algorithm:
• Is element A higher or lower than element B?
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Comparable Interface
• Implement the Comparable Interface to define 

how to compare instances of a class
• Allows you to use a generic sorting function

• Must implement the CompareTo(b) function
• Return 0 if identical
• Less than 0 if this < b or greater than 0 if this > b
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List<Name> names = new ArrayList<Name>();

// add elements to list

Collections.sort(names);
// list is magically sorted!



Sorting Students
• Look at the code in the "interfaces" package
• Student: stores name and GPA
• StudentSort: adds a few names to a list, tries to sort

• Uses Collections.sort()

• To allow a list of Names to be sorted, you must 
implement the Comparable<Student> interface

• Add code to implement CompareTo<Student> 
• Sort students by GPA
• Challenge: Use last name and then first name as tie breakers

• String already supports the compareTo() function, so you can 
use that as a base!
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Summary
• Abstract classes 

• Define structure of subclasses and force them to 
implement complete behavior

• Interfaces
• Define a list of functions that the implementor of an 

interface must include
• One class can implement multiple interfaces

• Ways to group similar classes and enforce what 
they define
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Project 2...
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Zombie Infestation 
Simulator

brains?



Zombie Sim Structure
• ZombieSim

• main()
• instantiates city
• loop: update city and draw

• City
• private Walls[][]
• update
• draw
• populate()
• what else to add???
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Tips/Best Practices:
 - Think carefully about class 
structure and the data and 
functions in each one
 - Think carefully about the "is 
a" versus "has a" relationship 
when designing your classes
 - It is always better to have a 
class interact with another 
using an API (functions) instead 
of directly accessing data
 - Use classes to encapsulate 
both data and functions. A City 
class should be responsible for 
everything to do with the city 
and a Cat class would be 
responsible for everything to do 
with cats, etc.


