CS 2113
Software Engineering

Java 4: Class Organization, Abstraction

Use Intellid to “Check out from Version Control” this
git repo: https://github.com/cs2113f18/template-j-4

Click Yes/Next until the project opens
Open code for drawing.MyDrawing
Run and edit the code

Play.

Professor Tim Wood - The George Washington University

https://github.com/cs2113f18/template-j-4

This Time...

* Project 1: how was it?

« More OOP Concepts

 Abstract Classes
* Polymorphism

* Introspection

* Interfaces

» Also
* Project 2

So Long CodeAnywhere...

» Sadness? Tears? of joy?

Intell1lJ IDEA

* Integrated Development Environment (IDE)

» Will make some parts of your life easier
» Can be a bit overwhelming

» Allows us to build more interesting programs
- Can create windows, play sounds, send data over network...
» Teaches you about a more realistic development
environment

* Your future job may use something different, but the principles
will be the same

* This is not actually a quiz
Java Quiz*™!
» Put code In the animals package!

» Store two types of pets---cats and dogs

* When you create a pet, constructor takes a name

» All pets have a printName() function that prints the name

 All pets have a makeNoise() function
- Cats say "meow" and dogs say "woof"

* Your main method should:

 Create two dogs named Fido and Spot

 Create three cats named Fluffy, Mowzer, and Pig
« Use ONE ArrayList to store all 5 pets

 Print the names of all pets

- Call the makeNoise function on all the pets

Files and Collections

e Let’s:
 Read all lines in a file

* Add each line to an Array List
* Print out a random entry from the array list

- Modity files.RandReader.java

Hierarchies and
Abstraction

Use the benefits of OOP

» Use a super class to store common
functionality

* Why?

Use the benefits of OOP

» Use a super class to store common
functionality

* Why?
- Code reuse - no copy/paste
- What if you need to add an "age" field to all pets?

- Polymorphism - treat similar objects the same way

ArrayList<Pet> 1list = new ArraylList<Pet>();
list.add(new Cat("Fluffy", 9));
list.add(new Dog("Fido"));

for(Pet s: list) {
s.makeNoise():

}

Abstraction

« Sometimes it doesn't make sense to implement

the functions in a class
- Would we ever want to instantiate a Pet object?

Shape Canvas

= =1

drawOutline drawShape(Shape s)
drawFilled

T

Triangle Square

drawOQutline drawOQutline
drawFilled drawFilled

- What would go in Shape's functions?

- Abstract classes define the structure of a class,
but not its actual implementation

Abstract Classes

» Mark class and methods with abstract keyword

» No function body for abstract methods
« Class can still have some real data and methods

» Child classes must implement all abstract
methods

* You can never instantiate an abstract class

public abstract class Shape {
public abstract void drawOutline();
public abstract void drawFilled();

}

public class Triangle extends Shape {
public void drawOutline() { ... }
public void drawFilled() { ... }

}

11

Drawing Shapes

Look at the shapes package
» What is the class hierarchy?

Create an ArrayList and put a Circle, Rectangle,
and Square into it

Draw the filled version of each shape to the

screen with a for loop
« (Get each shape out of the list and then call its drawFilled()

Add some more shapes to create a beautiful work
of art

12

Class Hierarchies

- Look at the "dumbshapes” package

» Why is this dumb?

Polymorphism

» Why does this work?

ArrayList<Shape> list = new ArrayList<Shape>();

list.add(new Circle (10, 10, 5, Color.blue));

list.add (new Rectangle(10, 5, 3, 6, Color.RED));
list.get(0).drawFilled();

* but not this?

ArrayList list = new ArrayList();

list.add(new Circle (10, 10, 5, Color.blue));
list.add(new Dog("Fido"));

list.get (0) .drawFilled();

14

Java 1s "strongly typed"

* The JVM knows the type (class) of each object
» |t enforces rules based on those types

» At|2?22222 |time it will decide if your code calls

functions that a type does not support

ArrayList list = new ArrayList();

list.add(new Circle (10, 10, 5, Color.blue));
list.add(new Dog("Fido"));

list.get(0) . .drawFilled();

- The array holds items of type Object

« That class doesn't have a drawFilled function!

15

Casting

- Casting objects does let us get around type rules:

// In package dumbshapes
ArrayList list = new ArrayList();

list.add(new Circle (10, 10, 5, Color.blue));
list.add(new Rectangle (10, 5, 3, 6, Color.RED));
list.add(new Square(4, 6, 5, Color.GREEN));

((Circle) list.get(0)).drawFilled();
((Rectangle) list.get(l)).drawFilled();
((Square) list.get(2)).drawFilled();

» What happens if we cast to the wrong type?

((Circle) list.get(2)).drawFilled();

16

But Remember:

» An object can do everything that its parent can do!

ArrayList<Shape> list = new ArrayList<Shape>();

list.add(new Circle (10, 10, 5, Color.blue));
list.add(new Rectangle (10, 5, 3, 6, Color.RED));
list.get(0).drawFilled(); // OK since Circle's are Shapes

- What about the opposite?

* Is a Shape a Circle?
* Is a Square a Rectangle?
- Is a Rectangle a Square?

ArrayList<Shape> list = new ArrayList<Shape>();
list.add(new Circle (10, 10, 5, Color.blue));
int r = list.get(0).radius; // Is this OK?

17

Introspection

» Polymorphism must know class of each object
* Introspection allows you to ask questions about

an object or class

» instanceof operator asks if an object is part of

a particular class

for (Shape s: shapes) {
if (s instanceof Rectangle){
s .drawOutline();

}

else {
s.drawFilled();
if (s instanceof Circle) {

r = ((Circle)s).radius;

What happens if |
have a Circle,

Rectangle, and
Square?

18

Organizing a zoo

« Suppose we have a program about animals...
 Cats, dogs, wolves, bears, lions, unicorns, etc

» They do things:
* eat
* roam
* make noise

 What classes and functions do we need?
» How would you organize them?

19

Consider these animals...

GrizzlyBear PandaBear CutePuppy

* How would they fit into a class tree?
- Pandas and Puppies are both cute... :(

20

Multiple Inheritance

« What if it makes sense for a class to inherit from
two parent classes?
 Java does not allow you to extend multiple classes

 Use an Interface

* Looks like an abstract class

« List of functions that must
be implemented

public interface Cuddly {

« Cannot include data! , ,
public void snuggle();

}
public class PandaBear extends Bear implements Cuddly ({
public void snuggle() { ... }
/[l ...

}

21

Why use an interface?

* You can only have one parent
- But you can implement many interfaces

« Useful when:

- Some subclasses do not implement a function
- Objects from several classes do implement a function

* Vegetarian interface implemented by:

» Brontosaurus (child of Dinosaur)
- Koala (child of Marsupial, also implements Cuddly)
 Hindu (child of Human)

22

Animals and pets

« Support as many of these animals as possible:

Cats, dogs, wolves, bears, lions,
unicorns, parrots, grizzly bears,

panda bears, pigeons, cuddly puppies,
panthers, horses, talking bears.

- Add code to the animals package

- Make them do interesting things

« Pets have names
 Cuddly animals snuggle
« Felines all roar

« What else?

In groups of at

least 2!

 Abstract classes? Interfaces?

23

Some animals

abstract Animal

age

die()

eat()

sleep()
exercisel()
move()
makeNoise()

]

abstract Feline

furLength
lives

makNoise()

T T

Panther

eat()

«interface» Pet

getNamel()

Cat

name

getName

abstract Canine

tailLength

Dog

24

An Interface 1s a Contract

» If you implement an interface, you promise to
support all of the methods defmed by the interface

HyperCube Shape | [canvas
{5
drawOutline() drawShape(Shape s)
drawOutline() drawFilled()
drawFilled() le
Triangle Square
drawOQutline() drawOQutline()
drawFilled() drawFilled()
print() print()
AV
TextDocument «interface» Jpglmage
Printable
print() print()
print()

» Why is this useful ???

25

Interfaces & Polymorphism

» Polymorphism lets us treat all classes that:

» Implement the same interface
» Are children of the same parent

» As if they are that parent or interface

public void main()
{
ArrayList<Printable> printme = new ArraylList<Printable>();
printme.add(new Triangle());
printme.add(new Square());
printme.add(new PdfDocument ());
printme.add(new TextDocument());
for (Printable p : printme) { p.print(); }
}

26

Abstract and Interface

Question 1:
« Can an abstract class have data members? Can an interface?

Question 2:

- Can you include the body of a function in an abstract class? In
an interface?

Question 3:

» What happens if a subclass does not implement one of the
methods in an abstract parent or an interface?

Question 4:

- Can you instantiate an object of an abstract type? an
interface?

27

Intertaces for Sorting

»+ Sorting Is a very common requirement

* How do you sort:

 Numbers
- Letters
 Names

« Animals

« Customers

» Basic operation in any sorting algorithm:
* |s element A higher or lower than element B?

28

Comparable Interface

» Implement the Comparable Interface to define
how to compare instances of a class

» Allows you to use a generic sorting function

List<Name> names = new ArrayList<Name>();
// add elements to list

Collections.sort (names);
// list is magically sorted!

» Must implement the CompareTo(b) function

» Return O if identical
* Lessthan Oif this < borgreaterthanOif this > b

29

Sorting Students

Look at the code In the "interfaces" package
Student: stores name and GPA

StudentSort: adds a few names to a list, tries to sort
» Uses Collections.sort()

To allow a list of Names to be sorted, you must
implement the Comparable<Student> interface

Add code to implement CompareTo<Student>

+ Sort students by GPA
» Challenge: Use last name and then first name as tie breakers

- String already supports the compareTo() function, so you can
use that as a base!

30

Summary

« Abstract classes

« Define structure of subclasses and force them to
implement complete behavior

* |Interfaces

» Define a list of functions that the implementor of an
iInterface must include

« One class can implement multiple interfaces

- Ways to group similar classes and enforce what
they define

31

hﬁ) -3 #r.-l

ZOMBIE INFESTATION
SIMULATOR

Zombie Sim Structure

« ZOombieSim Tips/Best Practices:

: — Think carefully about class
maln()_ _ structure and the data and
* Instantiates city functions in each one

o |Oop: update C|ty =1alo Mo\l - Think carefully about the "is

_ a" versus "has a" relationship
° C|ty when designing your classes
: - It is always better to have a
prlvate Wa”S[][] class interact with another
update using an API (functions) instead
 draw of directly accessing data
— Use classes to encapsulate
pOpUIate() both data and functions. A City
what else to add??? class should be responsible for
everything to do with the city
and a Cat class would be
responsible for everything to do
with cats, etc.

