
Professor Tim Wood - The George Washington University

CS 2113
Software Engineering

Java 4: Class Organization, Abstraction

Use IntelliJ to “Check out from Version Control” this
git repo: https://github.com/cs2113f18/template-j-4

Click Yes/Next until the project opens
Open code for drawing.MyDrawing

Run and edit the code
Play.

https://github.com/cs2113f18/template-j-4

This Time...
• Project 1: how was it?

• More OOP Concepts
• Abstract Classes
• Polymorphism
• Introspection
• Interfaces

• Also
• Project 2

!2

So Long CodeAnywhere…
• Sadness? Tears? of joy?

!3

IntelliJ IDEA
• Integrated Development Environment (IDE)

• Will make some parts of your life easier
• Can be a bit overwhelming

• Allows us to build more interesting programs
• Can create windows, play sounds, send data over network...

• Teaches you about a more realistic development
environment
• Your future job may use something different, but the principles

will be the same

!4

Java Quiz*!
• Put code in the animals package!
• Store two types of pets---cats and dogs

• When you create a pet, constructor takes a name
• All pets have a printName() function that prints the name
• All pets have a makeNoise() function

• Cats say "meow" and dogs say "woof"

• Your main method should:
• Create two dogs named Fido and Spot
• Create three cats named Fluffy, Mowzer, and Pig
• Use ONE ArrayList to store all 5 pets
• Print the names of all pets
• Call the makeNoise function on all the pets

!5

* This is not actually a quiz

Files and Collections
• Let’s:

• Read all lines in a file
• Add each line to an Array List
• Print out a random entry from the array list

• Modify files.RandReader.java

!6

Hierarchies and
Abstraction

Use the benefits of OOP
• Use a super class to store common

functionality

• Why?

!8

Use the benefits of OOP
• Use a super class to store common

functionality

• Why?
• Code reuse - no copy/paste

• What if you need to add an "age" field to all pets?

• Polymorphism - treat similar objects the same way

!9

 ArrayList<Pet> list = new ArrayList<Pet>();
 list.add(new Cat("Fluffy", 9));
 list.add(new Dog("Fido"));

 for(Pet s: list) { 
 s.makeNoise(); 
 }

Abstraction
• Sometimes it doesn't make sense to implement

the functions in a class
• Would we ever want to instantiate a Pet object?

• What would go in Shape's functions?
• Abstract classes define the structure of a class,

but not its actual implementation
!10

Abstract Classes
• Mark class and methods with abstract keyword

• No function body for abstract methods
• Class can still have some real data and methods

• Child classes must implement all abstract
methods

• You can never instantiate an abstract class

!11

public abstract class Shape {
public abstract void drawOutline();
public abstract void drawFilled();

}

public class Triangle extends Shape {
public void drawOutline() { ... }
public void drawFilled() { ... }

}

Drawing Shapes
• Look at the shapes package

• What is the class hierarchy?

• Create an ArrayList and put a Circle, Rectangle,
and Square into it

• Draw the filled version of each shape to the
screen with a for loop
• Get each shape out of the list and then call its drawFilled()

• Add some more shapes to create a beautiful work
of art

!12

Class Hierarchies
• Look at the "dumbshapes" package

• Why is this dumb?

!13

Polymorphism
• Why does this work?

• but not this?

!14

ArrayList<Shape> list = new ArrayList<Shape>();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Rectangle(10, 5, 3, 6, Color.RED));
list.get(0).drawFilled();

ArrayList list = new ArrayList();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Dog("Fido"));
list.get(0).drawFilled();

Java is "strongly typed"
• The JVM knows the type (class) of each object
• It enforces rules based on those types

• At compile time it will decide if your code calls
functions that a type does not support

• The array holds items of type Object
• That class doesn't have a drawFilled function!

!15

ArrayList list = new ArrayList();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Dog("Fido"));
list.get(0).drawFilled();

??????

Casting
• Casting objects does let us get around type rules:

• What happens if we cast to the wrong type?

!16

// In package dumbshapes
ArrayList list = new ArrayList();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Rectangle(10, 5, 3, 6, Color.RED));
list.add(new Square(4, 6, 5, Color.GREEN));

((Circle) list.get(0)).drawFilled();
((Rectangle) list.get(1)).drawFilled();
((Square) list.get(2)).drawFilled();

((Circle) list.get(2)).drawFilled();

But Remember:
• An object can do everything that its parent can do!

• What about the opposite?
• Is a Shape a Circle?
• Is a Square a Rectangle?
• Is a Rectangle a Square?

!17

ArrayList<Shape> list = new ArrayList<Shape>();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Rectangle(10, 5, 3, 6, Color.RED));
list.get(0).drawFilled(); // OK since Circle's are Shapes

ArrayList<Shape> list = new ArrayList<Shape>();
list.add(new Circle(10, 10, 5, Color.blue));
int r = list.get(0).radius; // Is this OK?

Po
ly
mo
rp
hi
sm
!

Introspection
• Polymorphism must know class of each object
• Introspection allows you to ask questions about

an object or class
• instanceof operator asks if an object is part of

a particular class

!18

for(Shape s: shapes) {
if(s instanceof Rectangle){

 s.drawOutline();
}
else {
s.drawFilled();
if(s instanceof Circle) {
 r = ((Circle)s).radius;

}
}

What happens if I
have a Circle,

Rectangle, and
Square?

Organizing a zoo
• Suppose we have a program about animals...

• Cats, dogs, wolves, bears, lions, unicorns, etc

• They do things:
• eat
• roam
• make noise

• What classes and functions do we need?
• How would you organize them?  

!19

Consider these animals...

• How would they fit into a class tree?
• Pandas and Puppies are both cute… :(

!20

GrizzlyBear PandaBear CutePuppy

Multiple Inheritance
• What if it makes sense for a class to inherit from

two parent classes?
• Java does not allow you to extend multiple classes

• Use an Interface
• Looks like an abstract class
• List of functions that must 

be implemented
• Cannot include data!

!21

public interface Cuddly {
public void snuggle();

}

public class PandaBear extends Bear implements Cuddly {
public void snuggle() { ... }
// ...

}

Why use an interface?
• You can only have one parent

• But you can implement many interfaces
• Useful when:

• Some subclasses do not implement a function
• Objects from several classes do implement a function

• Vegetarian interface implemented by:
• Brontosaurus (child of Dinosaur)
• Koala (child of Marsupial, also implements Cuddly)
• Hindu (child of Human)

!22

Animals and pets
• Support as many of these animals as possible:

• Add code to the animals package
• Make them do interesting things

• Pets have names
• Cuddly animals snuggle
• Felines all roar
• What else?

• Abstract classes? Interfaces?
!23

Cats, dogs, wolves, bears, lions,
unicorns, parrots, grizzly bears,
panda bears, pigeons, cuddly puppies,
panthers, horses, talking bears.

In groups of at
least 2!

Some animals

!24

An Interface is a Contract
• If you implement an interface, you promise to

support all of the methods defined by the interface

• Why is this useful???
• It means the compiler can treat all objects of an interface in

the same way---they MUST implement its functions

!25

Interfaces & Polymorphism
• Polymorphism lets us treat all classes that:

• Implement the same interface
• Are children of the same parent

• As if they are that parent or interface

•

!26

public void main()
{
ArrayList<Printable> printme = new ArrayList<Printable>();
printme.add(new Triangle());
printme.add(new Square());
printme.add(new PdfDocument());
printme.add(new TextDocument());
for (Printable p : printme) { p.print(); }

}

Abstract and Interface
• Question 1:

• Can an abstract class have data members? Can an interface?
• Question 2:

• Can you include the body of a function in an abstract class? In
an interface?

• Question 3:
• What happens if a subclass does not implement one of the

methods in an abstract parent or an interface?
• Question 4:

• Can you instantiate an object of an abstract type? an
interface?

!27

Interfaces for Sorting
• Sorting is a very common requirement
• How do you sort:

• Numbers
• Letters
• Names
• Animals
• Customers

• Basic operation in any sorting algorithm:
• Is element A higher or lower than element B?

!28

Comparable Interface
• Implement the Comparable Interface to define

how to compare instances of a class
• Allows you to use a generic sorting function

• Must implement the CompareTo(b) function
• Return 0 if identical
• Less than 0 if this < b or greater than 0 if this > b

!29

List<Name> names = new ArrayList<Name>();

// add elements to list

Collections.sort(names);
// list is magically sorted!

Sorting Students
• Look at the code in the "interfaces" package
• Student: stores name and GPA
• StudentSort: adds a few names to a list, tries to sort

• Uses Collections.sort()

• To allow a list of Names to be sorted, you must
implement the Comparable<Student> interface

• Add code to implement CompareTo<Student>
• Sort students by GPA
• Challenge: Use last name and then first name as tie breakers

• String already supports the compareTo() function, so you can
use that as a base!

!30

Summary
• Abstract classes

• Define structure of subclasses and force them to
implement complete behavior

• Interfaces
• Define a list of functions that the implementor of an

interface must include
• One class can implement multiple interfaces

• Ways to group similar classes and enforce what
they define

!31

Project 2...

!32

Zombie Infestation
Simulator

brains?

Zombie Sim Structure
• ZombieSim

• main()
• instantiates city
• loop: update city and draw

• City
• private Walls[][]
• update
• draw
• populate()
• what else to add???

!33

Tips/Best Practices:
 - Think carefully about class
structure and the data and
functions in each one
 - Think carefully about the "is
a" versus "has a" relationship
when designing your classes
 - It is always better to have a
class interact with another
using an API (functions) instead
of directly accessing data
 - Use classes to encapsulate
both data and functions. A City
class should be responsible for
everything to do with the city
and a Cat class would be
responsible for everything to do
with cats, etc.

