
Professor Tim Wood - The George Washington University

CS 2113
Software Engineering

Java 6: File and Network IO

https://github.com/cs2113f18/template-j-6-io.git

Project 2
• Zombies
• Basic GUI interactions

!2

Due on  
Sunday!

Keyboard input
• See practice.dots.DotKey for keyboard example

!3

package dots;

public class DotKeys extends JFrame implements ActionListener, KeyListener {  
{
 public DotKeys()
 {
 // ... in constructor add:
 this.addKeyListener(this);  
 }
 
 @Override  
 public void keyTyped(KeyEvent keyEvent) {  

System.out.println(keyEvent.getKeyChar());  
 }  
 // also need to implement keyPressed() and keyReleased()
}

https://github.com/cs2113f18/template-j-5

Keyboard input
• Be careful with buttons:

• Keyboard input will go to UI widget
currently in focus

• If you have a button in your
window, it will be focused and may
block events from reaching the
JFrame

• Solutions:
• Prevent button from gaining focus:
button.setFocusable(false);

• or Use KeyBindings class instead of
KeyListener

• or Add KeyListener to the Button as
well

!4

This Week
• Input and Output

• Briefly: working with files
• Readers, Writers, and streams

• Networking
• Connecting with sockets
• Sending and Receiving

!5

Input and Output
• What are examples of:

• Input?

• Output?

!6

Input and Output
• Inputs

• command line arguments, files, network, gamepads,
keyboard, mouse, temperature sensor, webcam, other
processes, etc

• Outputs
• files, network, gamepad rumble, monitor, LEDs, speakers,

robot motor, etc

!7

Reminder: Reading a File

!8

BufferedReader freader
 = new BufferedReader(new FileReader("data.txt"));

String line = freader.readLine();
while(line != null) {

System.out.println(line);
line = freader.readLine();

}

Readers and Streams
• We prepared to read a file with:

!9

BufferedReader freader
 = new BufferedReader(new FileReader("data.txt"));

BufferedReader

FileReader

file

Readers and Streams
• We prepared to read a file with:

!10

BufferedReader freader
 = new BufferedReader(new FileReader("data.txt"));

BufferedReader

FileReader

file

Holds data  
or text as a  

series of bytes

Turns bytes  
in a file into  

an input stream

Reads lines from 
an input stream

Design Patterns
• Basic principle: wrapping one class inside

another to provide additional functionality
• This applies to lots of situations!

• We call principles like this Design Patterns
• Here we have an example of the Decorator design pattern

• BufferedReader is taking a  
simple data stream and  
"decorating" it with more  
advanced functionality

!11

BufferedReader

FileReader

file

• Can take this principle even further to flexibly add
more functionality

• This combination:
• gets 1 byte input from file
• buffers bytes for efficiency
• uncompresses zipped bytes
• converts raw bytes into  

objects of a particular class

ObjectInputStream

GZipInputStream

Decorator Pattern

!12

BufferedInputStream

FileInputStream

file

Finding a random line
• Start with fileio.RandomLine.java

• Goal: store all the lines into an ArrayList and then
print out a random entry
• Ignore lines with zero length

• You do not know ahead of time how many lines
are in the file

!13

"Out, you green-sickness
carrion..."

Try / Catch
• IO is unpredictable

• What if the file is not there or the disk is full?
• What if the server crashes?

• Java supports exception handling with try / catch

• Code inside the try block is run
• Java run time monitors for errors

• If something goes wrong, runs the catch block
• Can have multiple catch blocks, one for each exception type

• Optional: run a finally block at end
• Happens whether or not an error occurred

!14

Writing to files
• I'll bet you can figure it out...

!15

Files
• What does this code do?

!16

//imports

public class Mystery {
 public static void main(String[] args) throws IOException {
 BufferedReader inputStream = null;
 PrintWriter outputStream = null;
 try {
 inputStream =
 new BufferedReader(new FileReader("file1.txt"));
 outputStream =
 new PrintWriter(new FileWriter("file2.txt"));

 String line;
 while ((line = inputStream.readLine()) != null) {
 outputStream.println(line);
 }
 }
 }
}

Line Reader + Writer
• Read in a file, then write it back out to a second

file

!17

import java.io.FileReader;
import java.io.FileWriter;
import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.IOException;

public class CopyLines {
 public static void main(String[] args) throws IOException {
 BufferedReader inputStream = null;
 PrintWriter outputStream = null;

 try {
 inputStream =
 new BufferedReader(new FileReader("file1.txt"));
 outputStream =
 new PrintWriter(new FileWriter("file2.txt"));

 String line;
 while ((line = inputStream.readLine()) != null) {
 outputStream.println(line);
 }
 } finally {
 if (inputStream != null) {
 inputStream.close();
 }
 if (outputStream != null) {
 outputStream.close();
 }
 }
 }
}

From Files to Networking
• What if we want to read data over the network

instead of from a file?

• We need a different data source
• But we are still just trying to read lines

!18

BufferedReader

FileReader

file

BufferedReader

InputStreamReader

network
connection

Interface Design Pattern
• What can you tell me about a “file” and a “network

connection”?

!19

BufferedReader

FileReader

file

BufferedReader

InputStreamReader

network
connection

Networking Basics
• Clients and servers

• Client initiates communication with a server
• Server listens for incoming requests

• Who is the client/server in....?
• Browser connecting to a web site
• Database returning a result to an application
• Bit torrent file sharing
• Skype video call between two people

• Networking is done with sockets
• An endpoint of the communication channel between the  

client and server
• Allows two way communication
• Can also be used for applications running on same computer

!20

Network Protocols
• Socket represents one end of a TCP connection

• TCP = Transmission Control Protocol
• TCP makes sending messages reliable, ordered, and fair

• Alternative: UDP = User Datagram Protocol
• Does not provide reliability or ordering guarantees
• Has lower overhead, so can make network sends faster

• What protocol would you use for?
• Connecting to a web site?
• A multiplayer shooter game?
• Making a voice call over the Internet?
• Accessing a database?

!21

Network Protocols
• What protocol would you use for?

• Connecting to a web site?
• TCP: want to guarantee that client requests reach the

server and client gets whatever response it produces

• A multiplayer shooter game?
• UDP: minimizing latency is more important than being

sure that game clients get all updates

• Streaming online video/audio?
• UDP: missing every other frame of video or audio is

better than having every frame take twice as long to be
displayed

• Accessing a database?
• TCP: need to guarantee that connections are reliable

and messages reach the server in order

!22

In
general,
TCP is

the most
popular
protocol

Opening a Connection
• What do you need to know to make a connection?

!23

?

Opening a Connection
• What do you need to know to make a connection?

• address of server
• hostname (google.com) or IP address

• port number to connect to
• common ports: 80 for web, 22 for ssh, 3306 for mysql database

!24

Try going to: http://209.85.201.102:80  
in a browser

host IP port number

Opening a Connection
• What do you need to know to make a connection?

• address of server
• hostname (google.com) or IP address

• port number to connect to
• common ports: 80 for web, 22 for ssh, 3306 for mysql database

• Create a new socket using the host and port

• Work with its input and output streams:

!25

Socket s = new Socket(host, portnum);

BufferedReader in = new BufferedReader(new InputStreamReader
(s.getInputStream()));

PrintWriter out = new PrintWriter(s.getOutputStream(), true);

Readers and Writers

!26

BufferedReader

InputStreamReader

PrintWriter

BufferedReader in = new BufferedReader(new InputStreamReader
 (s.getInputStream()));
PrintWriter out = new PrintWriter(s.getOutputStream(), true);

socket

socketC
lie

nt

Se
rv

er

Input Output

Read and Write
• Just like working with files!

!27

// Set things up
Socket s = new Socket(host, portnum);
BufferedReader in =
 new BufferedReader(new InputStreamReader(s.getInputStream()));
PrintWriter out = new PrintWriter(s.getOutputStream(), true);

// Receive a line
String s = in.readLine();
// Send a line
out.println(s.toUpperCase());

Election Day!
• Oops, we are a bit late
• #1: Connect to my server

• Create a new Socket, Buffered Writer, and PrintWriter
• #2: Vote for your favorite language:

• Send a string: "C", "Java", "Python", "PHP", or "Assembly"
• #3: Read a confirmation message from server

• Print it to the console

!28

Socket s = new Socket(host, portnum);
BufferedReader in = new BufferedReader(new InputStreamReader
(s.getInputStream()));
PrintWriter out = new PrintWriter(s.getOutputStream(), true);

PrintWriters
• Why did we use the true?

• The second argument sets 
whether autoflushing is enabled

• If autoflush = true, then calling println()
will immediately send the line over data stream

• If autoflush = false, then it will wait until you
call out.flush() or it runs out of buffer space

!29

PrintWriter out = new PrintWriter(s.getOutputStream(), true);

Enables
autoflush

Remember
this !

When to autoflush?
• If you are writing War and Peace to a file?

• If you are sending messages over the network
and want an immediate response?

• If you are writing out entries to a database file?

• What is the drawback of autoflush?

!30

When to autoflush?
• If you are writing War and Peace to a file?

• nope: grouping lines together makes the writes more efficient

• If you are sending messages over the network and
want an immediate response?
• yes: we want a message to be sent immediately

• If you are writing out entries to a database file?
• yes: we want to be sure that if we print out a record that it will

immediately be written to the database

• What is the drawback of autoflush?
• Autoflush can be inefficient if it leads to many small writes. This

is true for both network data streams and file writers
!31

The Server
• The basic server loop:

!32

ServerSocket server = new ServerSocket(portnum); // needs try/catch block

while (true) {
try {
Socket sock = server.accept(); // wait for a call
BufferedReader in = new BufferedReader(new InputStreamReader

(sock.getInputStream()));
PrintWriter out = new PrintWriter(sock.getOutputStream(), true);

String input = in.readLine(); // read a message
out.println("Message received");
out.close();
in.close();
sock.close(); // hang up

} catch (IOException e) {
e.printStackTrace();

}
}

Server Steps
• Create a ServerSocket on a specific port

• Call accept on the socket to wait for a connection
• This creates a new socket, specifically for this client

• Setup reader and writer streams using the new
client specific socket

!33

serverSocket server = new ServerSocket(portnum);

Socket sock = serverSocket.accept();

BufferedReader in = new BufferedReader(new InputStreamReader
 (sock.getInputStream()));
PrintWriter out = new PrintWriter(sock.getOutputStream(), true);

Knock Knock
• Work with a neighbor or two

• in the knockknock package
• one group writes client, the other writes the server

• Write a Knock-Knock joke server and client
• The client says: "Knock Knock"
• The server says: "Who is there?"
• The client says: "Something"
• The server says: "Something who?"
• The client says: "Something wittier than this"
• (print all messages to screen at both client and server)

• You can run netclient.FindMyIP.java to get your own IP

!34

Client Server Protocol
• The client and server must agree on a set

ordering of how they will exchange information

• What happens if client calls readLine() but
the server doesn't call println()?

• What about the reverse?

!35

Blocking Calls
• Receive calls such as readLine() are

blocking

• The function call will not return until something
is read from the data source (file or network)

• If you are writing network code and your
program freezes, it is probably because of this
kind of issue
• Or your PrintWriter isn't flushing!

!36

Mixed Up
• Split into pairs and look at netmismatch

package
• One of you will be client, one will be server

• Edit the client file to have the IP of the server
• You can run netclient.FindMyIP.java to get your own IP

• What happens when you start the server and then
run the client?

• How can you fix this?

!37

Sending something else
• What if we want to send something more

interesting?
• An int?
• A float?

• Use DataOutputStream and DataInputStream  
 http://download.oracle.com/javase/6/docs/api/java/io/DataOutputStream.html

!38

DataOutputStream out=new DataOutputStream(sock.getOutputStream());
DataInputStream in =new DataInputStream(sock.getInputStream());

out.writeFloat(Math.pi);
out.writeInt(42);

int x = in.readInt();
long y = in.readLong();

http://download.oracle.com/javase/6/docs/api/java/io/DataOutputStream.html

Summary
• File and Network IO are very similar in Java

• Abstraction! Code Reuse!

• Use different types of input and output streams
depending on what you need to send

• Clients and Servers need to agree ahead of time
on the protocol
• Be careful of unmatched sends and receives!

!39

Sending something else
• ints and floats aren't interesting enough...

• I want to send a Zombie

!40

Zombie

int x
int y

Color c
int direction

Sending Objects
• We just need a different type of data stream*!

• To send an object:

• To receive an object:

!41

ObjectInputStream in = new ObjectInputStream(s.getInputStream());

Object o = in.readObject();
Zombie z = (Zombie) o;

ObjectOutputStream out = new ObjectOutputStream(s.getOutputStream());

Zombie z = new Zombie();
out.writeObject(z);

*and to do what is on the next slide

a connected
socket

Serializable
• Java can read and write objects over the

network or to disk using Object*putStreams

• But, first the object class needs to tell the
compiler that it is allowed to be sent in this way!

• Need to make the class implement Serializable

• What is inside the interface?
• Nothing! It only acts as a marker for the compiler

!42

public class Zombie implements Serializable

Bonus!
• Object streams and serializable can also be

used to write or read objects to disk!

• This is why Java uses streams wrapped around
streams!

• Hooray object oriented programming!

!43

FileInputStream freader = new FileInputStream("date.out");
ObjectInputStream in = new ObjectInputStream(freader);

Object o = in.readObject();
Zombie z = (Zombie) o;

It seems so easy...
• But it's actually pretty complicated

• What are we really sending with a Zombie?

!44

Zombie

int x
int y

Color c
int direction

It seems so easy...
• But it's actually pretty complicated

• What are we really sending with a Zombie?

!45

Zombie

int x
int y

Color c
int direction

Color

int red;
int blue;

int green;

Sending Object Graphs

!46

���� �����
����

�
����������	��������������
�������
������	���
������������������������	���������������������
���������
����
������
������	����
��������	���
����������������������
����
������
������	����
����
����	�������������������������
������
��
�������
������������
���������������	�����

���

����

���

��
�

��������
���

��

��������
���
��

���
�������� ��

���

��

���

������

��
�

������

��	

�����
���
��

����

!����"

��������
���

��

��������
���
��

���

������

��
�

������

��	

�����
���
��

����

!�����"

	������������
������������������������������
������ ��
������	���
����
�������������������������������
�����������������
�����������
��������������������������������������
������	�����������
������
��
������������������

�
�
�����������
����

���������	��
������������

��������
���
��

����
��

����

Serialization saves the
entire object graph.
All objects referenced
by instance variables,
starting with the
object being serialized.

�
������
	���

���

Everything h
as to

be saved in
order to

restore the
 Kennel back

to this stat
e.

• The object being sent may have references to
many other objects
• All need to be sent!
• All need to be  

Serializable

Example from Head First Java

Serialization Challenges
• What happens if the server is running a newer

version of the code than the client
• The fields inside a Zombie may have changed
• The compiler assigns a version number to each class and

runtime will detect if different

• What if an object has a reference to a class which
does not implement serializable?
• May cause a java.io.NotSerializableException
• Solution: mark the variable as transient (will be treated as null)

!47

public class Zombie implements Serializable {
 public int x, y;
 public transient DotPanel dp; // do not send

