CS 2113
Software Engineering

Java 6: File and Network 10

https://github.com/cs2113f18/template-j-6-i0.git

Professor Tim Wood - The George Washington University

Project 2

. Zombles | | bue on
- Basic GUI interactions Sunday !

SN Zombie Simulation: jhatchet
- itk i -

| Pause Zombies | | Pause Humans Slide to adjust spe... ° O ‘ (o

Keyboard input

» See practice.dots.DotKey for keyboard example

package dots;

public class DotKeys extends JFrame implements ActionListener, KeyListener {

{
public DotKeys()

{
// ... in constructor add:
this.addKeyListener (this);

}

@Override

public void keyTyped(KeyEvent keyEvent) {
System.out.println(keyEvent.getKeyChar());
}

// also need to implement keyPressed() and keyReleased()

https://github.com/cs2113f18/template-|-5

Keyboard input

« Be careful with buttons:

» Keyboard input will go to Ul widget
currently in focus

- If you have a button in your
window, it will be focused and may
block events from reaching the

JFrame

« Solutions:

» Prevent button from gaining focus:
button.setFocusable(false);

- or Use KeyBindings class instead of
KeyLiStener Button Test!

- or Add KeyListener to the Button as
well

Dots!

This Week

» Input and Output
» Briefly: working with files
« Readers, Writers, and streams

* Networking

- Connecting with sockets
- Sending and Receiving

Input and Output

- What are examples of:

* |Input?

« Qutput?

Input and Output

* |Inputs

- command line arguments, files, network, gamepads,
keyboard, mouse, temperature sensor, webcam, other
processes, etc

Stream Program

« Qutputs
- files, network, gamepad rumble, monitor, LEDs, speakers,
robot motor, etc \

Stream = |
Program
e Data
(0011010000) 1001000011 J1001010101) Destination

Reminder: Reading a File

Buf feredReader freader
= new BufferedReader (new FileReader("data.txt"));

String line = freader.readLine();
while(line != null) {
System.out.println(line);
line = freader.readLine();

Readers and Streams

» We prepared to read a file with:

Buf feredReader freader
= new BufferedReader(new FileReader('data.txt"));

Buf feredReader

FileReader

Readers and Streams

» We prepared to read a file with:

Buf feredReader freader
= new BufferedReader (new FileReader('data.txt"));

Buf feredReader <«——Reads lines from
an input stream

FileReader

Turns bytes
in a file into
an input stream

Holds data
or text as a
series of bytes

10

Design Patterns

» Basic principle: wrapping one class inside
another to provide additional functionality
 This applies to lots of situations!

» We call principles like this Design Patterns
- Here we have an example of the Decorator design pattern

Buf feredReader

- BufferedReader is taking a
simple data stream and FileReader
"decorating" it with more
advanced functionality

11

Decorator Pattern

 Can take this principle even further to flexibly add
more functionality

ObjectInputStream
» This combination: .
» gets 1 byte input from file GaipinputsStrean
* buffers bytes for efficiency BufferedInputStream
* uncompresses zipped bytes

- converts raw bytes into FileInputStream
objects of a particular class

file

Finding a random line

- Start with £fileio.RandomLine.java

» (Goal: store all the lines into an ArrayList and then

print out a random entry
* Ignore lines with zero length

* You do not know ahead of time how many lines
are in the file

"Out, you green-sickness
carrion... '

13

Try / Catch

O is unpredictable

« What if the file is not there or the disk is full?
« What if the server crashes?

Java supports exception handling with try / catch

Code inside the try block is run
« Java run time monitors for errors

If something goes wrong, runs the catch block
- Can have multiple catch blocks, one for each exception type

Optional: run a £inally block at end
- Happens whether or not an error occurred

14

Writing to files

* I'll bet you can figure it out...

Files

 What does this code do?

//imports

public class Mystery {
public static void main(String[] args) throws IOException {
BufferedReader inputStream = null;
PrintWriter outputStream = null;
try {
inputStream =
new BufferedReader (new FileReader("filel.txt"));
outputStream =
new PrintWriter(new FileWriter("file2.txt"));

String line;
while ((line = inputStream.readLine()) != null) {
outputStream.println(line);

}

[.ine Reader + Writer

« Read In a file, then write it back out to a second

import java.io.FileReader;
import java.io.FileWriter;
import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.IOException;

public class CopyLines {
public static void main(String[] args) throws IOException {
BufferedReader inputStream = null;
PrintWriter outputStream = null;

try {
inputStream =

new BufferedReader (new FileReader("filel.txt"));
outputStream =
new PrintWriter(new FileWriter("file2.txt"));

String line;
while ((line = inputStream.readLine()) != null) {
outputStream.println(line);

}
} finally {

if (inputStream != null) ({
inputStream.close();

}

if (outputStream != null) {
outputStream.close();

From Files to Networking

« What if we want to read data over the network
instead of from a file?

 We need a different data source
- But we are still just trying to read lines

Buf feredReader Buf feredReader

FileReader InputStreamReader

network
connection

18

Interface Design Pattern

» What can you tell me about a “file” and a “network
connection™?

Buf feredReader Buf feredReader

FileReader InputStreamReader

network
connection

19

Networking Basics

« Clients and servers

« Client initiates communication with a server
- Server listens for incoming requests

 Who is the client/server In....?

» Browser connecting to a web site

- Database returning a result to an application
- Bit torrent file sharing

- Skype video call between two people

* Networking is done with sockets

- An endpoint of the communication channel between the
client and server

* Allows two way communication
- Can also be used for applications running on same computer

20

Network Protocols

» Socket represents one end of a TCP connection

» TCP = Transmission Control Protocol
- TCP makes sending messages reliable, ordered, and fair

» Alternative: UDP = User Datagram Protocol

» Does not provide reliability or ordering guarantees
- Has lower overhead, so can make network sends faster

- What protocol would you use for?

« Connecting to a web site?

» A multiplayer shooter game?

- Making a voice call over the Internet?
» Accessing a database?

21

Network Protocols

- What protocol would you use for? — ~ D
- Connecting to a web site?
- TCP: want to guarantee that client requests reach the In
server and client gets whatever response it produces
general,
- A multiplayer shooter game? TCPis
- UDP: minimizing latency is more important than being the most
sure that game clients get all updates popular
- Streaming online video/audio? protocol
- UDP: missing every other frame of video or audio is
better than having every frame take twice as long to be y

displayed

» Accessing a database?

- TCP: need to guarantee that connections are reliable
and messages reach the server in order

22

Opening a Connection

- What do you need to know to make a connection?

?

Opening a Connection

- What do you need to know to make a connection?

» address of server
* hostname (google.com) or IP address

» port number to connect to
- common ports: 80 for web, 22 for ssh, 3306 for mysqgl database

Try going to: http://209.85.201.102: 80

in a browser
host IP [port numberj

24

Opening a Connection

- What do you need to know to make a connection?

» address of server
* hostname (google.com) or IP address
* port number to connect to
- common ports: 80 for web, 22 for ssh, 3306 for mysqgl database

- Create a new socket using the host and port

Socket s = new Socket(host, portnum);

» Work with its input and output streams:

BufferedReader in = new BufferedReader (new InputStreamReader
(s.getInputStream()));
PrintWriter out = new PrintWriter(s.getOutputStream(), true);

25

Readers and Writers

BufferedReader in = new BufferedReader (new InputStreamReader
(s.getInputStream()));

PrintWriter out = new PrintWriter(s.getOutputStream(), true);

Client

-

Buf feredReader

InputStreamReader

socket

~

socket

Server

26

Read and Write

» Just like working with files!

// Set things up
Socket s = new Socket(host, portnum);

BufferedReader in =
new BufferedReader(new InputStreamReader(s.getInputStream()));

PrintWriter out = new PrintWriter(s.getOutputStream(), true);

// Receive a line

String s = in.readLine();

// Send a line
out.println(s.toUpperCase());

27

Election Day!

« Oops, we are a bit late
» #1: Connect to my server
« Create a new Socket, Buffered Writer, and PrintWriter

» #2: Vote for your favorite language:
- Send a string: "C", "Java", "Python", "PHP", or "Assembly"

» #3: Read a confirmation message from server
» Print it to the console

Socket s = new Socket (host, portnum);
BufferedReader in = new BufferedReader (new InputStreamReader

(s.getInputStream()));
PrintWriter out = new PrintWriter(s.getOutputStream(), true);

28

PrintWriters

Remembe
- Why did we use the true? w g (

PrintWriter out = new PrintWriter(s.getOutputStream(), true);

» The second argument sets
whether autoflushing is enabled | EEEES

Enables

* If autoflush = true, then calling println()
will immediately send the line over data stream

» If autoflush = false, then it will wait until you
call out.f£1lush () or it runs out of buffer space

29

When to autoflush?

» If you are writing War and Peace to a file?

» If you are sending messages over the network
and want an immediate response?

» If you are writing out entries to a database file?

 What is the drawback of autoflush?

30

When to autoflush?

If you are writing War and Peace to a file?
* nope: grouping lines together makes the writes more efficient

If you are sending messages over the network and

want an immediate response?
* yes: we want a message to be sent immediately

If you are writing out entries to a database file?

* yes: we want to be sure that if we print out a record that it will
immediately be written to the database

What is the drawback of autoflush?

 Autoflush can be inefficient if it leads to many small writes. This
IS true for both network data streams and file writers

31

The Server

» The basic server loop:

ServerSocket server = new ServerSocket (portnum); // needs try/catch block

while (true) {
try {
Socket sock = server.accept(); // wait for a call
BufferedReader in = new BufferedReader (new InputStreamReader
(sock.getInputStream()));
PrintWriter out = new PrintWriter(sock.getOutputStream(), true);

String input = in.readLine(); // read a message
out.println("Message received");

out.close();

in.close();

sock.close(); // hang up

} catch (IOException e) {
e.printStackTrace();
}
}

32

Server Steps

» Create a ServerSocket on a specific port

serverSocket server = new ServerSocket (portnum);

« Call accept on the socket to wait for a connection
» This creates a new socket, specifically for this client

Socket sock = serverSocket.accept();

» Setup reader and writer streams using the new
client specific socket

BufferedReader in = new BufferedReader (new InputStreamReader
(sock.getInputStream()));
PrintWriter out = new PrintWriter(sock.getOutputStream(), true);

33

Knock Knock

» Work with a neighbor or two

* in the knockknock package
* one group writes client, the other writes the server

» Write a Knock-Knock joke server and client

The client says: "Knock Knock"

ne server says: "Who is there?"

ne client says: "Something"

ne server says: "Something who?"

ne client says: "Something wittier than this"

» (print all messages to screen at both client and server)

* You can run netclient.FindMyIP.java to get your own IP

34

Client Server Protocol

» The client and server must agree on a set
ordering of how they will exchange information

- What happens if client calls readLine () but
the server doesn't call println()?

« What about the reverse?

35

Blocking Calls

Receive calls such as readLine () are
blocking

The function call will not return until something
IS read from the data source (file or network)

If you are writing network code and your
program freezes, it is probably because of this

kind of issue
» Or your PrintWriter isn't flushing!

36

Mixed Up

Split into pairs and look at netmismatch
package
« One of you will be client, one will be server

Edit the client file to have the IP of the server
* You can run netclient.FindMyIP.java to get your own IP

What happens when you start the server and then
run the client?

How can you fix this?

37

Sending something else

- What if we want to send something more
interesting?
* An int?
+ Afloat?

» Use DataOutputStream and DatalnputStream

http:/download.oracle.com/javase/6/docs/api/java/io/DataOutputStream.html

DataOutputStream out=new DataOutputStream(sock.getOutputStream());
DataInputStream in =new DatalInputStream(sock.getInputStream());

out.writeFloat (Math.pi);
out.writelInt (42);

int x = in.readInt();
long y = in.readLong();

38

http://download.oracle.com/javase/6/docs/api/java/io/DataOutputStream.html

Summary

 File and Network 10 are very similar in Java
« Abstraction! Code Reuse!

» Use different types of input and output streams
depending on what you need to send

» Clients and Servers need to agree ahead of time
on the protocol

 Be careful of unmatched sends and receives!

39

Sending something else

* Ints and floats aren't interesting enough...

« | want to send a Zombie

Zombie

INt X
Inty
Color c
int direction

40

Sending Objects

» We just need a different type of data stream™!

» To send an object:

ObjectOutputStream out = new ObjectOutputStream(s.getOutputStream());

Zombie z = new Zombie();
out.writeObject(z);

a connected

. . socket
 To receive an object:

ObjectInputStream in = new ObjectInputStream(s.getInputStream());

Object o
Zombie z

in.readObject();
(Zombie) o;

41

Serializable

- Java can read and write objects over the
network or to disk using Object*putStreams

» But, first the object class needs to tell the
compiler that it is allowed to be sent in this way!

* Need to make the class implement Serializable

public class Zombie implements Serializable

» What is inside the interface?
* Nothing! It only acts as a marker for the compiler

42

Bonus!

» Object streams and serializable can also be
used to write or read objects to disk!

FileInputStream freader = new FileInputStream('date.out");
ObjectInputStream in = new ObjectInputStream(freader);

Object o = in.readObject();
Zombie z = (Zombie) o;

» This is why Java uses streams wrapped around

streams!

» Hooray object oriented programming!

43

It seems so easy...

 But it's actually pretty complicated

- What are we really sending with a Zombie?

Zombie

int X
inty
Color c
int direction

44

It seems so easy...

 But it's actually pretty complicated

- What are we really sending with a Zombie?

Zombie
int X
inty
Color c— Color
int direction
int red;
int blue;

Int green;

Sending Object Graphs

» The object being sent may have references to
many other objects suarng witn e
ohject Leing serialized.

* All need to be sent! @
« All need to be v’

Serializable 4~

Sk, . .o
7, 'hg 0‘05@0

oo

Serialization Challenges

» What happens if the server is running a newer

version of the code than the client

» The fields inside a Zombie may have changed

» The compiler assigns a version number to each class and
runtime will detect if different

- What if an object has a reference to a class which

does not implement serializable?

- May cause a java.io.NotSerializableException
 Solution: mark the variable as transient (will be treated as null)

public class Zombie implements Serializable {
public int x, y;
public transient DotPanel dp; // do not send

47

