
Clone https://github.com/cs2113f18/template-j-7

Threads and Processes

• Operating system schedules processes.
• Each process has own resources and code.
• Switching the active process is (relatively)

slow.

Stack

Heap

Code
User Space

OS

Stack

Heap

Code

PID PID

Threads and Processes

Heap

Code

Stack Stack

PID

Thread 1 Thread 2T1 T2

• Threads allow concurrency within one app.
• Fast to switch between.
• Threads share the same memory space.

• A thread is a lightweight sub-process, the smallest unit of
processing.

• A thread is a separate path of execution.

• Threads are independent. If there occurs exception in one
thread, it doesn't affect other threads. It uses a shared
memory area.

Thread and Processes

As shown in the right figure, a thread is
executed inside the process.

There can be multiple processes inside the
OS, and one process can have multiple
threads.

Thread in Java
When an application first begins, user (main) thread is created.

Advantages of single thread:

• Reduces overhead in the application as
single thread execute in the system.

• Also, it reduces the maintenance cost of the
application.

Multithreading in Java

• It is a process of executing two or more threads simultaneously.
• It is also known as Concurrency in Java.
• Each thread runs parallel to each other.
• The main purpose of multithreading is to provide simultaneous

execution of two or more parts of a program to maximum utilize
the CPU time.

Why Using Multithreading

• To make a task run parallel to another task. e.g. drawing
and event handling.

• To take full advantage of CPU power.
• For reducing response time.
• To sever multiple clients at the same time.

Multithreading in Java

Multithreading in Java

Threads Have Their Own Stacks

�����	�������
�
�
���
������������������
����������������������
�������

Who decides the order?

• Take a look at
threads.scheduling.ManyThreads.java

• What happens when you run the code?

• Do you get the same ordering as your neighbor?

• What if you change the number of iterations?

• Or the number of threads?

• Is it the same every time you repeat?

Scheduling Threads

Creating a Thread in Java
There are two ways to create a new thread of execution:
• Declare a class to be a subclass of Thread. This subclass should

override the run method of class Thread.

• Declare a class that implements the Runnable interface. That
class then implements the run method.

• The class should extend Java Thread class.
• The class should override the run() method.
• The functionality that is expected by the

Thread to be executed is written in the run()
method.

• The class should implement the Runnable
interface.

• The class should implement the run() method in
the Runnable interface.

• The functionality that is expected by the Thread
to be executed is put in the run() method.

Extends Thread Class vs Implements Runnable Interface

• Extending the Thread class will make your class unable to extend other classes,
because of the single inheritance feature in JAVA. However, this will give you
a simpler code structure.

• If you implement Runnable, you can gain better object-oriented design and
consistency and also avoid the single inheritance problems. (preferred)

������������
����	��
�������
��

Thread Life Cycle in Java

���������������������������	��������	����
����

• A NEW Thread (or a Born Thread) is a thread that’s been created but not yet started. It remains in this state until we
start it using the start() method.

• When we’ve created a new thread and called the start() method on that, it’s moved from NEW to RUNNABLE state.
Threads in this state are either running or ready to run, but they’re waiting for resource allocation from the system.

• A thread is in the BLOCKED state when it’s currently not eligible to run. It enters this state when it is waiting for a
monitor lock, waiting for some other thread to perform a particular action, and is trying to access a section of code
that is locked by some other thread.

• It’s in the TERMINATED (DEAD) state when it has either finished execution or was terminated abnormally.

Why don’t we call run() method directly�

�����	��
��������������������������
�����
���������

Calling run() method: Calling strat() method:

Take a look at
threads.examples.RunMethodExamples.java
threads.examples.RunMethodExamples2.java

Can we start a Thread twice in Java?

�����	�����������������������������
�������
���
�����
�����������
�
�

The answer is no, once a thread is started, it can never be started
again. Doing so will throw an IllegalThreadStateException. Lets
have a look at the below code:

Take a look at
threads.examples.ThreadTwiceExample.java

Networking Threads

Networking Threads

Networking Threads

Networking Threads

Threaded Web Server

• Work with a neighbor
• Look at the threads.web.SlowWebServer class

• How does it work?
• Why is it slow?
• Have one person run it and then both connect at the

same time with a web browser
• Use the FrameBrowser class to load the page and

measure the time it takes. Does the time depend on
whether another request is active?

• Make the Web Server use threads
• Create and start a new thread for every new user

Chat Threads

Summary

